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Effect of spatial and temporal variations of the boundary temperature on the thermal stability
of horizontal flows
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~Received 22 December 1997!

The effects of linear spatial and temporal variations of the boundary temperature on the thermal instability
are discussed for different types of horizontal flows, which typically consist of forced and temperature-induced
velocity components. The nonlinear temperature profile resulting from such boundary conditions leads to an
unstable layer of heighthu , even when the fluid as a whole is heated from above. The critical values of the
Rayleigh and the wave number, defined with respect to this unstable layer, differ in most cases only little from
their asymptotic values forhu→0. The temperature-induced velocity component may be stabilizing or desta-
bilizing, depending on whetherhu is large or small. A temporal increase~decrease! of the boundary tempera-
ture has a destabilizing~stabilizing! influence if the unstable layer is in the lower part of the channel, and the
opposite effect if it is in the upper part. These results are compared to the considerably different situation when
a constant heat flux is imposed at the boundaries. The instability’s Prandtl number dependence, which results
from the coupling between the horizontal temperature gradient and the shear of the velocity field, is discussed
in terms of energy considerations.@S1063-651X~98!14205-8#

PACS number~s!: 47.27.Te, 44.25.1f, 47.15.2x, 47.20.Bp
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I. INTRODUCTION

A horizontal parallel flow that is homogeneously heat
from below becomes unstable with respect to thermal c
vection when the applied temperature difference excee
certain critical value. It is well known that the threshold a
the critical wavelength of this instability are the same as
the classical Rayleigh-Be´nard problem. The through-flow
merely acts as a selection mechanism for the direction of
wave vector in that the resulting convection rolls are para
to the flow direction@1,2#. The stability properties chang
drastically, however, if in addition to the vertical variation
also horizontal or temporal temperature variations leading
nonlinear vertical temperature profiles are included. Mos
the earlier work on this topic was restricted to closed flow
such as flows in closed containers~see Refs.@3,4#!. Studies
of a Poiseuille flow, on the other hand, were largely based
the assumption that the velocity field is not altered by
horizontal temperature gradient, and thus covered onl
very limiting case@5#. Correspondingly, the theoretical pre
dictions overestimated the threshold for large heat advec
where, as explained below, the neglected temperat
induced flow in fact leads to an additional destabilizatio
The more recent analysis of Ref.@6# focused on open flows
that are forced by a horizontal pressure gradientDpx through
channels with constant heat flux at the horizontal boundar
In that case, the thermal instability is triggered by an u
stable layer of heighthu which is caused by the nonlinea
temperature profile. It was found that a Rayleigh number Ru

defined with respect to this unstable layer has similar crit
values for very different flow types, while the critical value
of the usual Rayleigh number Ra~defined with respect to the
total channel height! would vary over many orders of mag
nitude @6#.
571063-651X/98/57~5!/5578~7!/$15.00
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The present paper deals with the corresponding bu
many respects quite different results for systems where
tial and/or temporal temperature variations are imposed
perfectly conducting horizontal boundaries@7#. The methods
and notations are largely the same as in Ref.@6#. In Sec. II,
the fundamental hydrodynamic equations are presented,
in Sec. III the base flows resulting from these equations
derived and discussed for the system under consideratio
is shown that the velocity field is a superposition of a forc
and a temperature-induced component, the latter be
caused by the horizontal temperature gradient. The co
sponding vertical temperature profile is nonlinear and can
separated into four parts, two of which are induced by
two parts of the velocity field while the other two result fro
the time-dependent and time-independent parts of the bo
ary condition. Also in Sec. III, the conditions under whic
such a temperature profile will lead to a potentially unsta
layer are derived, and the influence of the temperatu
induced flow component as well as the influence of tempo
temperature changes on this layer are discussed in deta
linear stability analysis of these flows is presented in Sec.
with the results being discussed in Sec. V. It turns out th
similar to the case of constant heat flux boundaries@6#, the
instability is indeed triggered by an unstable layer of heig
hu . The Rayleigh number Rau and wave numberku, both
defined with respect tohu , have critical values that depen
only on the unstable layer and its neighborhood, and wh
for sufficiently smallhu are largely independent of the ex
plicit value of hu . In the usual Rayleigh-Be´nard system, the
source of instability is easily identified as the negative ve
cal temperature gradient, leading to critical Rayleigh a
wave numbers that are Prandtl number independent.
equations presented in Sec. IV, however, exhibit a sec
possible instability mechanism that results from the coupl
5578 © 1998 The American Physical Society
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57 5579EFFECT OF SPATIAL AND TEMPORAL VARIATIONS . . .
between the horizontal temperature gradientb and the verti-
cal shear]zŪ of the velocity profile. This mechanism i
Prandtl number dependent. Qualitative arguments for its
fluence are given in Sec. IV and are confirmed in Sec.
where the results for Pr57 are compared to those for P
→`.

II. BASIC EQUATIONS

The parallel flows considered here are assumed to b
infinite horizontal extent in thex-y plane and are driven by
horizontal pressure gradientDpx . In the verticalz direction,
they are bounded by two perfectly conducting, no-s
boundaries~at z56H) with temperaturesT(z56H)5
7DT/21bx1cbt1const. These boundaries impose a ve
cal temperature differenceDT, a horizontal temperature gra
dientb, and temperature changes in time with a constant
cb . Defining U052cb /b and using an appropriate nond
mensionalization, the boundary condition can be written

T~z561!57
DT

2
1b~x2U0t !1const, ~1!

thus showing that the time dependence of the bounda
vanishes when observed from a frame of reference
moves withU0. Space, time, and temperature are scaled
units ofH, H2/n, andn2/(gaH3), respectively.H is half the
channel height,g is the acceleration due to gravity,a is the
coefficient of thermal expansion, andn is the kinematic vis-
cosity. The constant in Eq.~1! will be suppressed in the
following as only temperature differences are important.

We will consider parallel flows of the general form

U5Ū~z!, V5W50, ~2a!

T5T̄~z!1b~x2U0t !, ~2b!

whereU andV are the horizontal andW the vertical velocity
components. The profilesŪ(z) and T̄(z) have to be derived
from the Navier-Stokes equations and the heat equat
which in the Boussinesq approximation read~translational
invariance is assumed in they direction!

~] t1U]x1W]z!U52]xP1¹2U, ~3a!

~] t1U]x1W]z!W52]zP1¹2W1T, ~3b!

Pr~] t1U]x1W]z!T5¹2T. ~3c!

Pr5n/k is the Prandtl number withk the thermal diffusion.
As in Ref. @6#, we mainly consider Pr57, as appropriate for
water.

Inserting Eqs.~2a! and ~2b! into Eq. ~3b! yields 05
2]zP1T and thus]xP5*]xTdz1Dpx5bz1Dpx . By us-
ing this to eliminate the pressure from Eq.~3a! and then
inserting Eqs.~2a! and ~2b! into Eqs.~3a! and ~3c!, we fi-
nally obtain

]z
2Ū5bz1Dpx , ~4a!

]z
2T̄5Prb~Ū2U0!. ~4b!
-
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III. BASE FLOW

The velocity field can be derived from Eq.~4a! as a su-
perposition of a temperature-induced flow proportional tob
~and with zero average! and a Poiseuille flow forced by th
constant horizontal pressure gradientDpx ~with an average
velocity vm52Dpx/3):

Ū~z!5bUb~z!1vmUp~z!. ~5!

Using the no-slip boundary conditionŪ(z561)50, we
find Ub(z)5z(z221)/6 andUp(z)5(3/2)(12z2). Equation
~4b! together with the boundary condition~1! then yields the
temperature profile as

T̄~z!5PrbvmS Tp~z!2
U0

vm

z2

2
1

b

vm
Tb~z! D2

DT

2
z, ~6!

where

]z
2Tp5Up~z! and ]z

2Tb5Ub~z!.

We chooseTp(11)5Tp(21) and Tb(11)5Tb(21), so
that the net temperature difference across the channel is
tirely determined by the last termDTz/2 on the right-hand
side of Eq. ~6!, and hence findTp(z)5z2(32z2/2)/4 and
Tb(z)5z(z4/102z2/317/30)/12. (Tb here differs by a term
z/45 from the corresponding function in Ref.@6#!.

Obviously, Eqs.~4a! and~4b! can also be solved for mor
general types of forced flows with the form of Eqs.~5! and
~6! remaining unchanged, provided that the forced veloc
componentUp(z) and the corresponding temperature co
ponentTp(z) are adjusted properly. For a Couette flow, i.
a flow with moving upper and nonmoving lower boundary
well as Dpx50 in Eq. ~4a!, we find Up(z)5(z11) and
Tp(z)5z2/21z(z221)/6. In Sec. V, the systematics of ou
approach will be illustrated by comparing the results
flows with nonmoving boundaries to those for ‘‘pure Coue
flow,’’ i.e., Couette flow with b!vm , where the
temperature-induced flow can be neglected and the velo
profile is indeed linear.

For discussing the relevance of the different terms in E
~6!, b andvm are assumed to be positive@8#. This leads to a
potentially unstable layer at the bottom boundary wh
DT/(bvm) exceeds a certain value. The necessary condi
]zT̄(z521),0 for the existence of such a layer yields b
evaluating Eq.~6!

DT

2Prbvm
.211

U0

vm
2

1

45

b

vm
. ~7!

It is interesting to note that unstable situations arise e
when the temperature difference over the whole chan
would favor stability, i.e., forDT,0. This is caused by the
nonlinear part ofT̄(z), the magnitude of which is given by
the overall prefactor in Eq.~6!, i.e., by the average hea
advectionbvm . Therefore, increasing the value ofbvm will
in most cases increase the instability.

The temperature profiles in Figs. 1~b!, 2~b!, and 3 illus-
trate the criterion~7! for different values ofDT/(2Prbvm),
which decreases from left to right, i.e., from more to le
unstable. Figure 1 corresponds to the simplest caseU050
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5580 57STILLER, SCHÖPF, PATTERSON, AND SCHULTZ
and b/vm!1, where the velocity field is the same as f
ordinary Poiseuille flow. The decrease of the height of
unstable layer and its eventual disappearance are obvio
Fig. 1~b! from left to right. Figures 2 and 3 demonstrate ho
the profiles shown in Fig. 1 are influenced by theb-induced
flow and by temporal temperature variations, respectiv
These cases will be discussed in more detail below. It will
assumed that the onset of thermal instability is predo
nantly determined by the strength of the unstable layer.
influence of the different terms is expected to be stabiliz
when they increase the temperature gradient in the unst
region and its neighborhood~i.e., decrease2]zT̄), and de-
stabilizing when they decrease the temperature gradient~in-
crease2]zT̄) there @9#. This approach is justified by th
results of the stability analysis presented in Sec. V.

A. Influence of the temperature-induced flow

The individual temperature profiles shown in the thr
subsets on the right-hand side of Fig. 2~b! all haveU050.
They are induced by the velocity profiles shown in the rig
subset of Fig. 2~a!, which are for different values ofb/vm
with the average heat advectionbvm being held constant
Note that an increase ofb/vm increases the contribution o
Tb to the temperature profile@see Eq.~6!#, and that the de-
rivative of Tb is positive in the middle part of the chann
and negative near the boundaries. Correspondingly, an

FIG. 1. ~a! Velocity profile Ū(z) and ~b! corresponding tem-

perature profilesT̄(z) for U050 andb/vm!1 fixed. The different
curves in~b! correspond from left to right to the different values
DT/(2Prbvm)50.5,20.5,21.2, i.e., from more to less unstab
@compare Eq.~7!#.

FIG. 2. ~a! Velocity and~b! temperature profiles forU050 and
different values ofb/vm . The bold lines are the same as in Fig.
i.e., for b/vm!1. The thin dashed, thin dashed-dotted, and t
solid lines are forb/vm58,16,32, respectively. Different curves i
each of the 4 subsets on the right differ from each other only b
multiple of the function shown in the left part of the respective ro
e
in

.
e
i-
e

g
ble

t

in-

crease ofb/vm is destabilizing whenhu is small or zero@see
the third and fourth subset of Fig. 2~b!#, whereas it has a
stabilizing effect when the potentially unstable layer exten
well over the middle part of the channel. In the latter case
decreases the heighthu of the unstable layer as well as th
temperature differenceDTu across it, as can be seen in th
second subset of Fig. 2~b!.

Our analysis explains why in an earlier study for condu
ing boundaries, where the influence ofTb has been neglecte
@5#, the theory overestimated the measured threshold for
case of large horizontal heat advection. Apparently, the
perimental flow had a substantialb-induced component that
as explained above, will lower the threshold for smallhu .
@Note that large heat advection corresponds to smallhu ,
since it leads to a strongly curved vertical temperature p
file, see Eq.~4b!#. This behavior is in contrast to the case
boundaries with constant heat flux, where the contribut
coming from the temperature-induced flow component is s
bilizing everywhere in the channel@6# ~see also Fig. 4!. In
that case, an increase of the temperature-induced flow
creases the temperature differenceDT5T(21)2T(11)
across the channel.

B. Influence of temporal temperature variations

The temporal variations of the boundary temperature
cluded in Eq.~1! have no influence on the velocity profile
however, they alter the vertical temperature profile by add
a term proportional to2z2/2 @see Eq.~6!#. As seen on the
left-hand side of Fig. 3, this has a stabilizing effect in t
lower and a destabilizing effect in the upper part of the ch
nel. Since the flows considered here have their unstable
gion at the bottom of the channel, it is the behavior in th
lower region that determines the instability, at least for n

a
.

FIG. 3. Vertical temperature profiles forb/vm!1 fixed and
different values ofU0 /vm . The solid lines are the same as in Fi
1~b!, i.e., for U050. The thin dashed, thin dashed-dotted, bo
dashed-dotted, and bold dashed lines are forU0 /vm520.8,
20.4,0.4,0.8, respectively. Different curves in each of the 3 sub
on the right differ from each other only by a multiple of the fun
tion shown in the left subset.

FIG. 4. ~a! b-induced component ofT̄(z) for conducting~solid
line: Tb) and constant heat flux boundaries~dashed line:Tb

1z/45). ~b! The component ofT̄(z) induced by temporal tempera
ture variations for conducting~solid line: 2z2/2) and constant hea
flux boundaries~dashed line:Tp2z2/2 @10#!.
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57 5581EFFECT OF SPATIAL AND TEMPORAL VARIATIONS . . .
too largehu . The three subsets on the right-hand side of F
3 demonstrate this behavior for different values ofDT/bvm .
We generally find thatU0,0 is destabilizing andU0.0 is
stabilizing, except for very large values ofU0 /vm when the
term proportional to2z2/2 creates an unstable region in th
upper part of the channel~not shown here!. In the last subse
of Fig. 3, one can particularly observe how an unstable la
~which does not exist forU050, bold solid line! is formed
for U0,0 ~thin lines!, i.e., by a linear temporal increase
the boundary temperature. In the second subset from
right, the unstable layer forU050 ~bold solid line! disap-
pears for sufficiently largeU0 /vm.0 ~bold dashed line!.

In channels with constant boundary heat flux, it was fou
that temporal temperature changes have the opposite e
@6#. In that case, a linear temperature decrease (bU0.0) is
destabilizing for flows withb/vm!1, because temporal tem
perature variations (U0Þ0) change the prefactorbvm of the
nonlinear part ofT̄(z) in Eq. ~6!. As shown in the Appendix
the effect onbvm can be combined with the term propo
tional to 2z2/2 to form an effective temperature compone
Tp2z2/2, which largely describes the influence of tempo
temperature variations for constant heat flux boundaries@10#.
As seen in Fig. 4~b!, this component has the opposite stab
ity characteristics as2z2/2.

In order to gain an intuitive understanding of these diff
ent behaviors, note that for constant heat flux boundar
situations withbU0.0 may result from linearly decreasin
the fluid temperature at the inflow of the channel so that
time dependence of the temperature inside the channel
consequence of heat advection~bulk heating! alone~see also
Ref. @6#!. Therefore, the bottom layer is in some way effe
tively cooled fromabove, since advective heat transport
stronger in the middle of the channel where the flow veloc
is larger. For conducting boundaries on the other ha
bU0.0 is caused by decreasing the temperature at
boundaries, which means an effective cooling frombelow,
since the bottom boundary will have a larger impact on
bottom layer than the upper boundary.

IV. LINEAR STABILITY ANALYSIS

A. Eigenvalue equations

We now perform a linear stability analysis of the bas
solutions discussed above with respect to longitudinal
tionary thermal convection modes@1,2#. These modes arex
independent and of the formF(z)exp(iky1st), with the real
numbersk ands being the wave number and the growth ra
andF(z) the eigenfunction. The fundamental equations l
earized with respect to such perturbations yield the eig
value problem fors5s(k). For an incompressible fluid
(]xU1]yV1]zW50), these equations can be written as

~s2]z
21k2! ũ52bŪ8w, ~8a!

~s2]z
21k2!~]z

22k2!w52k2q, ~8b!

~Prs2]z
21k2!q52Pr~ T̄8w1 ũ !, ~8c!

with the primes indicating derivatives with respect toz ~e.g.,
T̄85]zT̄). Ū(z) and T̄(z) are given by Eqs.~5! and ~6!
above,q is the temperature component of the perturbati
.
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and u and w are the longitudinal and vertical velocity pe
turbations, withũ5bu. If s(k)<0 for all wave numbersk,
the flow is linearly stable. The wave numberkc for which
s(k) first crosses the origin is thecritical wave number, and
the parameters where this occurs are thecritical parameters.

B. Instability mechanisms

According to Eqs.~8a!–~8c!, the thermal stability of the
flow is determined byT̄8 andbŪ8 only. While the destabi-
lizing effect of T̄8,0 is well known from the usua
Rayleigh-Ben´ard problem, the influence ofbŪ8 is less evi-
dent. From Eq.~4b! we find bŪ85Pr21T̄-, so that the in-
fluence of theb-Ū8 coupling increases with decreasing P
For large Pr it can be neglected, in which case Eq.~8a!
decouples from Eqs.~8b! and ~8c!. The stability problem
then becomes identical to the ‘‘usual’’ Rayleigh-Be´nard
problem~but still for a nonlinear vertical temperature profile!
where the critical values are Pr independent.

In order to gain a qualitative understanding of theb-Ū8
coupling, we consider the~generalized! energy integrals tha
are obtained by multiplying Eqs.~8a!–~8c! by u* , w* , and
q* , respectively~the asterisk indicates the complex conj
gate!, and then integrating overz. The real parts of these
equations can be written as

^bŪ8 ũw* &52s^u ũ u2&2^u¹ ũ u2&, ~9a!

k2^wq* &5s^u¹wu2&1^u¹2wu2&, ~9b!

Prs^uqu2&52^u¹qu2&2Pr~^T̄8wq* &1^ ũq* &!. ~9c!

^ & denotes the integral over the real part, and¹
5(]x ,]y ,]z) with ]x5 ik and ]y50 for the perturbations
considered here. Equation~9a! implies that^bŪ8 ũw* &,0
in a vicinity of the threshold. If we consider a situatio
wherebŪ8.0 then^bŪ8 ũw* &,0 indicates thatũ is nega-
tively correlated tow. Sincew and q are positively corre-
lated @^wq* &.0, see Eq.~9b!#, ũ is normally also nega-
tively correlated toq ~i.e., ^ ũq* &,0). Therefore, such a
situation enhances temperature perturbations@see Eq.~9c!#,
so thatbŪ8.0 is expected to have a destabilizing effe
while bŪ8,0 should be stabilizing.

Since the instability of the flows studied here is trigger
by an unstable layer, we conclude that the perturbations
largest within this layer which therefore dominates the in
grals in Eqs.~9a!–~9c!. As a consequence, the net influen
of the second, Prandtl number dependent mechanism
these flows is determined by the sign ofbŪ8 in this layer. In
Sec. V below, we will show that the differences between
results for Pr57 and Pr→` are indeed well explained by thi
argument.

V. RESULTS AND DISCUSSION

Some quantitative results of the stability calculations
shown in Figs. 5–8. The Rayleigh number Rau and the wave
numberku, which are used to characterize the thermal ins
bility, are defined with respect to the unstable layer of hei
hu and in our scales are given by
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Rau5Prhu
3DTu

and

ku5khu ,

whereDTu is the temperature difference across this unsta
layer. It turns out that the critical values Rac

u andkc
u behave

in a similar manner for very different flow types. Note tha
large value ofhu corresponds to a comparably small curv
ture of T̄(z), which occurs for smallbvm andbU0 @compare
Eq. ~6!#. In this regime, where Rac

u andkc
u rise more rapidly

~see Figs. 5–7!, the critical value Rac of the usual Rayleigh
number, defined with respect to the total channel heig
changes more slowly and may thus yield a reasonable st
ity estimate@11#. For largerbvm and/orbU0, however, Rac

FIG. 5. Critical values Rac
u andkc

u as functions ofhu for flows
with Pr57 and U050 ~i.e., only spatial temperature variations!.
The solid and the long-dashed lines are for pure Couette and
seuille flows (b/vm!1), respectively, while the short-dashed lin
are forb/vm5100.

FIG. 6. Critical values Rac
u andkc

u as functions ofhu for flows
with temporal temperature variations~here Pr5 7 andb/vm!1).
The bold solid lines are forb50 ~with bU0 finite!, and the thin
lines are forDT/(2Prbvm)521,21.2,21.5,23 from bottom to
top. The bold dashed lines are the same as in Fig. 5, and are s
as a reference.
le

-

t,
il-

would change its sign and vary over many orders of mag
tude, so that it cannot be used for stability measures. Rac

u and
kc

u , on the other hand, vary rather slowly, and forhu→0 they
tend towards constant values that are the same for flow
completely different origins~the insets in Figs. 5 and 6 show
this region in more detail!.

In Ref. @6#, the behavior for smallhu was explained in
terms of the scaling properties of the flow in the unsta
region and its neighborhood. Ashu becomes small,Ū(z)
may be approximated by a linear Couette flowŪ(z)
'Ū8(21)(z11) in this region, which, according to Eq
~4b!, corresponds to

T̄8~z!'PrbS Ū8~21!

2
~z11!22U0~z11! D 1Q l ,

~10!

oi-

wn

FIG. 7. Critical values Rac
u andkc

u as functions ofhu for flows
with different Prandtl numbers. The bold lines are the same a
Fig. 5 (Pr5 7; solid lines: Couette flow; dashed lines: Poiseui
flow!. The thin lines show the corresponding results for Pr→`.

FIG. 8. Similar to Fig. 7, but now for a flow withb/vm5100.
The bold lines are the same as in Fig. 5 (Pr57), while the thin lines
are for Pr→`.
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57 5583EFFECT OF SPATIAL AND TEMPORAL VARIATIONS . . .
whereQ l5]zT̄(z521) is the heat flux at the lower bound
ary. In this approximation, the stability problem depen
only on two scale-invariant parameters so that Rac

u andkc
u are

completely determined by the parameterSinv

5PrbU0hu /Q l . In particular, all flows withU050 ~and
thusSinv50) have the same critical values in this limit. Th
behavior is demonstrated in Fig. 5 for Couette~solid lines!
and Poiseuille flow~long-dashed lines! as well as for flows
with a large b-induced velocity component (b/vm5100,
short-dashed lines!.

Figure 6 shows the corresponding results for instabilit
that are caused by a linear increase of the boundary temp
ture with time (U0 /vm,0). The bold solid lines are for pur
temporal, i.e., no horizontal temperature variations (b→0,
but cb52bU0 finite!. In this case, the temperature profil

are second order polynomials@ T̄5Prcbz2/22DTz/2, com-
pare Eq.~4b!# leading toSinv51 @12#. The thin lines are for
Poiseuille flows (b/vm!1) with combined spatial and tem
poral variations of the boundary temperature, and are
tween those for pure~bold solid lines! and no~bold dashed
lines! temporal temperature variations. In any case, Rac

u dif-
fers not more than 20% andkc

u not more than 5% from the
corresponding values forU050 ~bold dashed lines!. These
differences are small, considering that Rau varies very rap-
idly with DT ~changingDT not only changesDTu but also
hu , on which Rau depends quite sensitively!. In order to
explain the behavior of the thin lines forhu→0, we note that
in this limit Sinv→1 for DT/(2Prbvm),21 andSinv→0 for
DT/(2Prbvm)521 @13#. Therefore, the upper thin lines
where DT/(2Prbvm),21, approach the bold solid line
while the lower thin lines, whereDT/(2Prbvm)521, ap-
proach the bold dashed lines forhu→0.

The influence of the Prandtl number@which is equivalent

to the influence of the termbŪ8 on the eigenvalue problem
~8a!–~8c!# is shown in Figs. 7 and 8. Here, the results d
rived above for Pr57 ~bold lines! are compared to those fo

Pr→` ~thin lines!, i.e., when theb-Ū8 coupling in Eq.~8a!
can be neglected. The stability threshold for Couette fl

~solid lines!, which hasbŪ8.0 everywhere in the channe

is lowered by theb-Ū8 coupling throughout, in agreemen
with our discussions above. For Poiseuille flow~long-dashed
lines!, on the other hand,bŪ8,0 in the upper andbŪ8
.0 in the lower part of the channel, so that the destabiliz
influence in the lower part of the channel may be larg
compensated by the stabilizing influence in the upper pa
hu is large. Accordingly, the net destabilizing influence
this mechanism~i.e., the difference between the thin dash
and the bold dashed lines in the inset of Fig. 7! becomes
noticeable only for sufficiently smallhu , when the bulk of
the unstable layer is in the lower part. For the large
b-induced flow (b/vm5100), bŪ8,0 in the middle part
and bŪ8.0 near the boundaries of the channel@compare
Fig. 2~a!#. Therefore, the influence of theb-Ū8 coupling is
stabilizing for largehu ~where a large part of the unstab
layer is in the middle region! and becomes destabilizing fo
smallerhu . This effect is shown in Fig. 8, where again th
bold lines correspond to Pr57 and the thin lines to Pr→`.
s
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VI. CONCLUSION AND OUTLOOK

Although formally similar, the flows with conducting
boundaries discussed here were found to behave in m
respects quite differently from those with constant heat fl
boundaries~see Ref.@6#!. We have shown that theb-induced
flow component may be either stabilizing or destabilizin
while for constant heat flux boundaries it is always stabil
ing. Further, temporal variations in the boundary temperat
corresponding toU0Þ0 were found to have the opposit
effect as in the fixed boundary heat flux case. These res
underline the different nature of these flows, which arise
quite a different context~see Sec. III B and Appendix!.

The influence of the Prandtl number on the instability c
be well described by a qualitative discussion of theb-Ū8
coupling. While for very large Prandtl number this seco
instability mechanism has the character of a perturbation
becomes increasingly important as Pr decreases. For
small Pr, also other velocity-dependent instability mech
nisms are expected to become more relevant, since in
case larger velocities are required to sustain the same
linear vertical temperature profile@compare Eq.~4b!#. How
these other modes are influenced by the horizontal temp
ture gradient is an important question for further resear
The flows considered here may be particularly interesting
this context as their inflection point can be continuou
shifted by varyingb/vm .

APPENDIX: BOUNDARIES WITH CONSTANT
HEAT FLUX

We briefly discuss for constant heat flux boundaries
influence of temporal temperature variations~corresponding
to U0Þ0) on the prefactorbvm in Eq. ~6!. We only consider
the caseb!vm , so that changes of theb-induced flow can
be neglected. For this type of boundary condition,b is not
imposed directly by the boundaries, but rather a result of
balance between heat advection and the net boundary
flux DQ5Qu2Q l , with Qu5T8(z51) and Q l5T8(z5
21) being the heat flux at the upper and lower bounda
respectively.

Integrating Eq.~4b! from the lower to the upper boundar
of the channel yields

DQ52Prb~vm2U0!

or

b5
DQ

2Pr~vm2U0!
, ~A1!

which can be written as

Prbvm5
DQ

2 S 11
U0

vm2U0
D

and

PrbU05
DQ

2 S U0

vm2U0
D . ~A2!
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Using Eq. ~A2!, b!vm and DT52(Qu1Q l) ~which is
valid for b!vm), we can now write Eq.~6! as

T̄~z!5
DQ

2 FTp~z!1
U0

vm2U0
S Tp~z!2

z2

2 D1
Qu1Q l

DQ
zG .
~A3!
g.

sf
,

o
s a

y

We find that an increase ofU0 increases the contribution o
the effective temperature componentTp2z2/2 except for
very large temporal changes of the temperature, whenU0

.vm .
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@8# The results for negativeb are obtained by simultaneousl
changing the sign of the temperature and invertingz, which
leaves the basic equations invariant.

@9# Note that the sign ofDTu has been chosen such thatDTu

5T(z521)2T(z5211hu) is positive, in accordance with
the normal Rayleigh-Be´nard problem.

@10# This temperature component includes the changes ofbvm that
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are induced by the temporal temperature variations co
sponding toU0Þ0, but not the changes of the vertical tem
perature profile caused by theb-induced flow component. The
influence ofU0 on theb-induced flow depends strongly onvm

and therefore has to be considered separately.
@11# Note that forhu52, the unstable layer extends over the who

channel height and the critical values approach those for n
mal Rayleigh-Be´nard convection, which are exactly repro
duced forbvm5bU050.

@12# For a quadratic temperature profile we can write]zT̄(z)5Q l

2PrbU0(z11). Then, ]zT̄(211hu)50 yields hu

5Q l /(PrbU0) and thusSinv51.
@13# The limit hu→0 corresponds toU0 /vm↗DT/(2Prbvm)11,

since the unstable layer vanishes forU0 /vm>DT/(2Prbvm)
11 @see Eq.~7!#. Therefore,DT/(2Prbvm)11,0 and finite
implies thatU0 /vm remains finite withU0 /vm,0, so that the
quadratic term in Eq.~10! can be neglected for vanishinghu .

Hence,T̄(z) can be approximated by a second order polyn
mial leading to Sinv51 and Sinv→1 for hu→0 @12#. If
DT/(2Prbvm)1150, on the other hand, Eq.~6! yields Q l

5PrbU0 and thusSinv5hu which trivially tends to zero for
hu→0.


