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of horizontal flows

Olaf Stiller! Wolfgang Schpf,2 John C. Patterschand Andrew Schuliz
Department of Meteorology, University of Reading, Earley Gate, Reading RG6 6BB, United Kingdom
2Department of Civil and Environmental Engineering, James Cook University of North Queensland,
Townsville, Queensland 4811, Australia
(Received 22 December 1997

The effects of linear spatial and temporal variations of the boundary temperature on the thermal instability
are discussed for different types of horizontal flows, which typically consist of forced and temperature-induced
velocity components. The nonlinear temperature profile resulting from such boundary conditions leads to an
unstable layer of height,, even when the fluid as a whole is heated from above. The critical values of the
Rayleigh and the wave number, defined with respect to this unstable layer, differ in most cases only little from
their asymptotic values fdn,—0. The temperature-induced velocity component may be stabilizing or desta-
bilizing, depending on whethédr, is large or small. A temporal increasgecreasgof the boundary tempera-
ture has a destabilizingstabilizing influence if the unstable layer is in the lower part of the channel, and the
opposite effect if it is in the upper part. These results are compared to the considerably different situation when
a constant heat flux is imposed at the boundaries. The instability’s Prandtl number dependence, which results
from the coupling between the horizontal temperature gradient and the shear of the velocity field, is discussed
in terms of energy consideratiorf$1063-651X98)14205-9

PACS numbes): 47.27.Te, 44.25:f, 47.15~x, 47.20.Bp

I. INTRODUCTION The present paper deals with the corresponding but in
many respects quite different results for systems where spa-
A horizontal parallel flow that is homogeneously heatedtial and/or temporal temperature variations are imposed by
from below becomes unstable with respect to thermal conperfectly conducting horizontal boundarieq. The methods
vection when the applied temperature difference exceeds and notations are largely the same as in Rgf. In Sec. I,
certain critical value. It is well known that the threshold andthe fundamental hydrodynamic equations are presented, and
the critical wavelength of this instability are the same as forin Sec. Il the base flows resulting from these equations are
the classical Rayleigh-Bard problem. The through-flow derived and discussed for the system under consideration. It
merely acts as a selection mechanism for the direction of thiss shown that the velocity field is a superposition of a forced
wave vector in that the resulting convection rolls are paralleand a temperature-induced component, the latter being
to the flow direction[1,2]. The stability properties change caused by the horizontal temperature gradient. The corre-
drastically, however, if in addition to the vertical variations sponding vertical temperature profile is nonlinear and can be
also horizontal or temporal temperature variations leading t@eparated into four parts, two of which are induced by the
nonlinear vertical temperature profiles are included. Most otwo parts of the velocity field while the other two result from
the earlier work on this topic was restricted to closed flowsthe time-dependent and time-independent parts of the bound-
such as flows in closed containdsee Refs[3,4]). Studies ary condition. Also in Sec. Ill, the conditions under which
of a Poiseuille flow, on the other hand, were largely based osuch a temperature profile will lead to a potentially unstable
the assumption that the velocity field is not altered by thdayer are derived, and the influence of the temperature-
horizontal temperature gradient, and thus covered only &duced flow component as well as the influence of temporal
very limiting case[5]. Correspondingly, the theoretical pre- temperature changes on this layer are discussed in detail. A
dictions overestimated the threshold for large heat advectiolinear stability analysis of these flows is presented in Sec. IV,
where, as explained below, the neglected temperaturawith the results being discussed in Sec. V. It turns out that,
induced flow in fact leads to an additional destabilization.similar to the case of constant heat flux boundaf&s the
The more recent analysis of R¢6] focused on open flows instability is indeed triggered by an unstable layer of height
that are forced by a horizontal pressure gradiepg through  h,. The Rayleigh number Raand wave numbek", both
channels with constant heat flux at the horizontal boundarieslefined with respect tb,, have critical values that depend
In that case, the thermal instability is triggered by an un-only on the unstable layer and its neighborhood, and which
stable layer of heighh, which is caused by the nonlinear for sufficiently smallh, are largely independent of the ex-
temperature profile. It was found that a Rayleigh numbér Raplicit value ofh,,. In the usual Rayleigh-Berd system, the
defined with respect to this unstable layer has similar criticabource of instability is easily identified as the negative verti-
values for very different flow types, while the critical values cal temperature gradient, leading to critical Rayleigh and
of the usual Rayleigh number Rdefined with respect to the wave numbers that are Prandtl number independent. The
total channel heightwould vary over many orders of mag- equations presented in Sec. IV, however, exhibit a second
nitude[6]. possible instability mechanism that results from the coupling
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between the horizontal temperature gradigrand the verti- Ill. BASE FLOW

cal shearazu_ of the velocity pro_file_. This mechanism is_ The velocity field can be derived from E¢a) as a su-

Prandtl numb_er de_pendent. Qualitative arguments for its iNberposition of a temperature-induced flow proportionaBto
fluence are given in Sec. IV and are confirmed in Sec. V(and with zero averageand a Poiseuille flow forced by the
where the results for Pr7 are compared to those for Pr .qnstant horizontal pressure gradiém, (with an average

% velocity v ,= —Ap,/3):

IIl. BASIC EQUATIONS U(2)=BU4(2) +v,U,(2). (5)

The parallel flows considered here are assumed to be Q‘jsing the no-slip boundary conditiod(z=+1)=0, we
infinite horizontal extent in th&-y plane and are driven by a find U 4(2) = 2(22— 1)/6 ande (2)=(3/2)(1— Z_z) Equ,ation
B\ — p\e/ :

horizontal pressure gradieftp, . In the verticalz direction, : o :
they are bounded by two perfectly conducting, no-slipigr?:;g?aet&gs:ggléhzsboundary conditif) then yields the

boundaries(at z=*+H) with temperaturesT(z==*=H)=
FAT/2+ Bx+cpt+const. These boundaries impose a verti- _ Uogz> B
cal temperature differenc®T, a horizontal temperature gra- T(2)=PBum| To(2) = — 5+ U_TB(Z) —52z
dient 3, and temperature changes in time with a constant rate m m
Cp- DefiningUqy=—c,/B and using an appropriate nondi- where
mensionalization, the boundary condition can be written as

#5To=Up(z) and 32Tz=U4(2).

AT
T(z=*1)=5—-+B(x—Ut) +const, (D) We chooseT,(+1)=T,(~1) and T4(+1)=T(~1), S0
that the net temperature difference across the channel is en-

thus showing that the time dependence of the boundarig#ely determined by the last terldTz/2 on the right-hand
vanishes when observed from a frame of reference thagide of Eq.(6), and hence findl'p(z)=22(3—22/2)/4 and
moves withU,. Space, time, and temperature are scaled iﬁl'ﬁ(z)=z(z4/10— 7213+ 7/30)/12. (T s here differs by a term
units ofH, H?/v, andv?/(gaH?), respectivelyH is half the ~ z/45 from the corresponding function in R¢6]).
channel heightg is the acceleration due to gravity, is the Obviously, Egs(4a and(4b) can also be solved for more
coefficient of thermal expansion, andis the kinematic vis- general types of forced flows with the form of E¢S) and
cosity. The constant in Eq1) will be suppressed in the (6) remaining unchanged, provided that the forced velocity
following as only temperature differences are important. ~ componentU,(z) and the corresponding temperature com-

We will consider parallel flows of the general form ponentT,(z) are adjusted properly. For a Couette flow, i.e.,
o a flow with moving upper and nonmoving lower boundary as
U=U(z), V=W=0, (2a)  well as Ap,=0 in Eq. (48, we find U,(2)=(z+1) and
Tp(z):zZ/2+ z(z2—1)/6. In Sec. V, the systematics of our
T=ﬁz)+B(x—U0t), (2b) approach will be illustrated by comparing the results for
flows with nonmoving boundaries to those for “pure Couette
whereU andV are the horizontal and/ the vertical velocity  flow,” i.e., Couette flow with B<v,, where the

components. The profildd(z) andT(z) have to be derived temper_atgre-induc_:ed flow can be neglected and the velocity
from the Navier-Stokes equations and the heat equatioProfile is indeed linear.

which in the Boussinesq approximation reécanslational For discussing the relevance of the different terms in Eq.
invariance is assumed in thedirection (6), B andv,, are assumed to be positiy/8]. This leads to a
potentially unstable layer at the bottom boundary when
(d+Ud+Wa,)U=—4,P+ V23U, (38 AT/(Bv,) exceeds a certain value. The necessary condition
) d,T(z=—1)<0 for the existence of such a layer yields by
Pr(d,+ Udy,+Wa,) T=V?T. (30 AT Upo 1 B .
>—1+———=—.
2P1Bu vm 45vun @

Pr= v/« is the Prandtl number witk the thermal diffusion.

As in Ref.[6], we mainly consider P¢7, as appropriate for |t js interesting to note that unstable situations arise even
water. . ) when the temperature difference over the whole channel
Inserting Eqgs.(2a) and (2b) into Eq. (3b) yields 0= \yould favor stability, i.e., forAT<O0. This is caused by the
—0zP+T and thuso,P = d,Tdz+ Apyx=5z+ Apy. By us- nonlinear part ofT(z), the magnitude of which is given by
ing this to eliminate the pressure from E@a) and then 0 oo prefactor in Eq(6), i.e., by the average heat

inserting Eqs(2a) and (2b) into Eqs.(38) and (30, we fi- o4 ectiongy . Therefore, increasing the value 6, wil

nally obtain in most cases increase the instability.

The temperature profiles in Figs(k), 2(b), and 3 illus-
trate the criterion7) for different values ofAT/(2P1Bv ),
— _ which decreases from left to right, i.e., from more to less
3;T=PrB(U—Uy). (4b)  unstable. Figure 1 corresponds to the simplest tase 0

d5U=pz+Apy, (42)
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Z oy T T 7 FIG. 3. Vertical temperature profiles fg8/v,,<1 fixed and
different values olU,/v,,. The solid lines are the same as in Fig.

-1 . 1(b), i.e., for Uy=0. The thin dashed, thin dashed-dotted, bold

T dashed-dotted, and bold dashed lines are y/v,,=—0.8,
—0.4,0.4,0.8, respectively. Different curves in each of the 3 subsets
FIG. 1. () Velocity profile U(z) and (b) corresponding tem- on the right differ from each other only by a multiple of the func-
perature profile§ (z) for Uy=0 andB/v,,<1 fixed. The different  tion shown in the left subset.
curves in(b) correspond from left to right to the different values of
AT/(2PBuy)=0.5-0.5-1.2, i.e., from more to less unstable crease of3/v,, is destabilizing whet, is small or zerdsee
[compare Eq(7)]. the third and fourth subset of Fig(l8], whereas it has a
stabilizing effect when the potentially unstable layer extends
and Blvy<1, where the velocity field is the same as for el over the middle part of the channel. In the latter case, it
Ordinary Poiseuille flow. The decrease of the he|ght of thq-jecreases the he|ght‘I Of the unstab|e |ayer as We” as the
unstable layer and its eventual disappearance are obvious {8mperature differencAT, across it, as can be seen in the
Fig. 1(b) from left to right. Figures 2 and 3 demonstrate how gecond subset of Fig (2.
the profiles shown in Fig. 1 are influenced by Benduced Our analysis explains why in an earlier study for conduct-
flow and by temporal temperature variations, respectivelying boundaries, where the influenceTof has been neglected
These cases will be discussed in more detail below. It will bgs), the theory overestimated the measured threshold for the
assumed that the onset of thermal instability is predomirase of large horizontal heat advection. Apparently, the ex-
nantly determined by the strength of the unstable layer. Th%erimental flow had a substantjgtinduced component that,
influence of the different terms is expected to be stabilizingyg explained above, will lower the threshold for snal
when they increase the temperature gradient_in the unstabhsz\k)te that large heat advection corresponds to smgll
region and its neighborhoodl.e., decrease-4,T), and de-  since it leads to a strongly curved vertical temperature pro-
stabilizing when they decrease the temperature gradient file, see Eq(4b)]. This behavior is in contrast to the case of
crease—&zﬁ there[9]. This approach is justified by the boundaries with constant heat flux, where the contribution
results of the stability analysis presented in Sec. V. coming from the temperature-induced flow component is sta-
bilizing everywhere in the channgb] (see also Fig. ¥ In
that case, an increase of the temperature-induced flow de-
creases the temperature differendd=T(—1)—T(+1)
The individual temperature profiles shown in the threeacross the channel.
subsets on the right-hand side of FigbRall haveU,=0.
They are induced by the velocity profiles shown in the right B. Influence of temporal temperature variations
subset of Fig. @), which are for different values o8/v,,
with the average heat advectigdv,, being held constant.
Note that an increase @/v,, increases the contribution o
Tj to the temperature profilssee Eq.(6)], and that the de-
rivative of T, is positive in the middle part of the channe
and negative near the boundaries. Correspondingly, an irI

A. Influence of the temperature-induced flow

The temporal variations of the boundary temperature in-
f cluded in Eq.(1) have no influence on the velocity profile,
however, they alter the vertical temperature profile by adding
| aterm proportional to-z%/2 [see Eq.(6)]. As seen on the
eft-hand side of Fig. 3, this has a stabilizing effect in the
ower and a destabilizing effect in the upper part of the chan-
nel. Since the flows considered here have their unstable re-

1 . . L .
a gion at the bottom of the channel, it is the behavior in this
Z or . lower region that determines the instability, at least for not
Up
-1
1 (b)
z O-TB + & = b) /
b\‘ & 7 z ‘0 z
- : z 1 -2 Pz

FIG. 2. (a) Velocity and(b) temperature profiles fdd,=0 and _
different values of8/v,,,. The bold lines are the same as in Fig. 1,  FIG. 4. (8 B-induced component 6f(z) for conducting(solid
i.e., for Blv,<1. The thin dashed, thin dashed-dotted, and thinline: Tg) and constant heat flux boundari¢dashed line:T,
solid lines are forB/v,,=8,16,32, respectively. Different curves in +2z/45). (b) The component of (z) induced by temporal tempera-
each of the 4 subsets on the right differ from each other only by dure variations for conductingsolid line: —z%/2) and constant heat
multiple of the function shown in the left part of the respective row. flux boundariegdashed IineTp—zzlz [10]).
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too largeh, . The three subsets on the right-hand side of Figandu andw are the longitudinal and vertical velocity per-
3 demonstrate this behavior for different value\dt/ Bv , . turbations, withu = Bu. If o(k)<0 for all wave numbers,

We generally find thallo<<0 is destabilizing andJo>0 is  the flow is linearly stable. The wave number for which
stabilizing, except for very large values 0% /vy, when the (k) first crosses the origin is theitical wave number, and

term proportional to-z?/2 creates an unstable region in the the parameters where this occurs aredtiical parameters.
upper part of the channéhot shown herg In the last subset

of Fig. 3, one can particularly observe how an unstable layer
(which does not exist fod,=0, bold solid ling is formed ] -
for Uy<O (thin lines, i.e., by a linear temporal increase of ~ According to Eqs(8a)—(8c), the thermal stability of the
the boundary temperature. In the second subset from thow is determined byl’ and BU’ only. While the destabi-
right, the unstable layer fod,=0 (bold solid ling disap- lizing effect of T'<0 is well known from the usual

pears for sufficiently largéo/vy,>0 (bold dashed ling Rayleigh-Béard problem, the influence @gU’ is less evi-
In channels with constant boundary heat flux, it was found . = 1T .
; d(Fnt. From Eq(4b) we find BU’'=Pr ~T"”, so that the in-
that temporal temperature changes have the opposite effec — o ' i
[6]. In that case, a linear temperature decregdg>0) is fluence of theB-U’ coupling increases with decreasing Pr.
destabilizing for flows with3/v,<1, because temporal tem- FOr large Pr it can be neglected, in which case &g

perature variationst{,+0) change the prefactgu  of the ~ decouples from Eqsi8b) and (8c). The stability problem

nonlinear part off(2) in Eq. (6). As shown in the Appendix then becomes identical to the “usual” Rayleighi&ed
the effect onBu,, can be combined with the term propor- problem(but still for a nonlinear vertical temperature profile

. . where the critical values are Pr independent.
tional to —z%/2 to form an effective temperature component P

T,— 2212, which largely describes the influence of temporal " order to gain a qualitative understanding of jid)’
temperature variations for constant heat flux boundafiés coupling, we consider thegeneralizeglenergy integrals that

As seen in Fig. @), this component has the opposite stabil- 3¢ obtained by multiplying Eq$8a)—(8c) by u*, w*, and
ity characteristics as-2%/2. 9%, respectively(the asterisk indicates the complex conju-

In order to gain an intuitive understanding of these differ-9at@, and then integrating ovez. The real parts of these
ent behaviors, note that for constant heat flux boundarie€duations can be written as

B. Instability mechanisms

situations withBU >0 may result from linearly decreasing (7T — — /1 TT12\ | UTT]2

the fluid temperature at the inflow of the channel so that the (BU"uw) == o(Ju") =([Vul, 3
time dependence of the temperature inside the channel is a k2<W,9*>:g<|VW|2>+<|V2W|2>, (9b)
consequence of heat advectidulk heating alone(see also

Ref. [6]). Therefore, the bottom layer is in some way effec- Pro(|9]2) = —(|V9|?) — PR(T' wd*)+(u9*)). (90

tively cooled fromabove since advective heat transport is ,

stronger in the middle of the channel where the flow velocityl ) denotes the integral over the real part, afvd

is larger. For conducting boundaries on the other hand:(dx,dy,dz) with dx=ik and d,=0 for the perturbations
BU,>0 is caused by decreasing the temperature at theonsidered here. Equatid®a implies that(BU’uw*)<0
boundaries, which means an effective cooling frbalow in a vicinity of the threshold. If we consider a situation
since the bottom boundary will have a larger impact on thayheregU’ >0 then(BLT’Uw*><0 indicates thati is nega-
bottom layer than the upper boundary. tively correlated tow. Sincew and ¥ are positively corre-

lated [(w9*)>0, see Eq(9b)], U is normally also nega-

tively correlated tod (i.e., (U9*)<0). Therefore, such a
A. Eigenvalue equations situation enhances temperature perturbatimes Eq.(90)],

We now perform a linear stability analysis of the basicSC thatBU’>0 is expected to have a destabilizing effect,
solutions discussed above with respect to longitudinal stawhile U’ <0 should be stabilizing.
tionary thermal convection mod¢$,2]. These modes are Since the instability of the flows studied here is triggered
independent and of the forf(z)exp(ky+ot), with the real by an unstable layer, we conclude that the perturbations are
numbersk ando being the wave number and the growth ratelargest within this layer which therefore dominates the inte-
andF(z) the eigenfunction. The fundamental equations lin-grals in Eqs(9a—(9¢). As a consequence, the net influence
earized with respect to such perturbations yield the eigerof the second, Prandtl number dependent mechanism on
value problem foro=a(k). For an incompressible fluid these flows is determined by the signgifl’ in this layer. In
(o,U+4d,V+3,W=0), these equations can be written as  Sec. V below, we will show that the differences between the

results for P=7 and P+~ are indeed well explained by this

IV. LINEAR STABILITY ANALYSIS

(0—d2+k?)u=—BU"w, (88 argument.
2 2V 92 2\ L2
(0= 37+ k) (I, —kHw=—k*d, (8b) V. RESULTS AND DISCUSSION
(Pro—92+k?) &= —Pr(T'w+1), (80) Some quantitative results of the stability calculations are

shown in Figs. 5—8. The Rayleigh number'Rad the wave
with the primes indicating derivatives with respectztée.g.,  numberk", which are used to characterize the thermal insta-
T'=4,T). U(z) and T(z) are given by Eqs(5) and (6) bility, are defined with respect to the unstable layer of height
above, 9 is the temperature component of the perturbationh, and in our scales are given by
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FIG. 5. Critical values Raandk{ as functions oh, for flows FIG. 7. Critical values Rhandk{ as functions oh, for flows

with Pr=7 andUy=0 (i.e., only spatial temperature variations with different Prandtl numbers. The bold lines are the same as in
The solid and the long-dashed lines are for pure Couette and Pokig. 5 (Pr= 7; solid lines: Couette flow; dashed lines: Poiseuille
seuille flows B/v,<1), respectively, while the short-dashed lines flow). The thin lines show the corresponding results for-Pr.

are for B/v,,=100.

3 would change its sign and vary over many orders of magni-
Ra'=Ph,AT, tude, so that it cannot be used for stability measure$ aRe
ks , on the other hand, vary rather slowly, and figr—0 they
tend towards constant values that are the same for flows of
k'=kh,, completely different origingthe insets in Figs. 5 and 6 show

whereAT, is the temperature difference across this unstabl&his region in more detail _ _
layer. It turns out that the critical values Randk; behave In Reff. r[]G]' the;_ behavior for srr;aIrI:u \f/lvas _exprl]amed mbl
in a similar manner for very different flow types. Note that a€"MS Of the scaling properties of the flow in the unstable

large value oth, corresponds to a comparably small curva-region and its neighborhood. As, becomes smalll(z)
ture of T(z), which occurs for smalBv,, andBU, [compare May be approximated by a linear Couette flou(z)
Eg. (6)]. In this regime, where Raandk} rise more rapidly ~U’(—1)(z+1) in this region, which, according to Eq.
(see Figs. 57 the critical value Raof the usual Rayleigh (4b), corresponds to

number, defined with respect to the total channel height,

and

changes more slowly and may thus yield a reasonable stabil- LT’(— 1)
ity estimate[11]. For largerBv,, and/orBU,, however, Ra T'(z2)~P1B ——(z+ 1)2—Uq(z+ 1)) +0,,
(10
24 . .
ku 22 7 ]
(] ><‘5>~\‘\\\ _____ ~ //
20 [ __oee--" ==l Neer .
18 | -
ll
700 | ! :
500 /
RaY 600 | J ]
L I ! 0 c o .___ e Rt 4 K
0.0 0.5 1.0 1.5 2.0 500 | _—ee--"""" . ]
h, L
400 : 1' ]
FIG. 6. Critical values Raandky as functions oh,, for flows 0.0 0.5 -0 -5
with temporal temperature variatioisere Pr= 7 and B/v,,<1). hu
The bold solid lines are foB=0 (with BU,, finite), and the thin
lines are forAT/(2P1Bv,)=—1,—1.2,—1.5,—3 from bottom to FIG. 8. Similar to Fig. 7, but now for a flow wit{s/v ,=100.

top. The bold dashed lines are the same as in Fig. 5, and are showie bold lines are the same as in Fig. 5€R1, while the thin lines
as a reference. are for Pr>oo.
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where®,=3,T(z= —1) is the heat flux at the lower bound- VI. CONCLUSION AND OUTLOOK
ary. In this approximation, the stability problem depends o . .
only on two scale-invariant parameters so that &adk! are Although formally similar, the flows with conducting

boundaries discussed here were found to behave in many
respects quite differently from those with constant heat flux
boundariegsee Ref[6]). We have shown that thg-induced
flow component may be either stabilizing or destabilizing,
while for constant heat flux boundaries it is always stabiliz-
, ) . ing. Further, temporal variations in the boundary temperature
with a large g-induced velocity component{v,=100,  cqorresponding tdJ,#0 were found to have the opposite
short-dashed lings , _ _ effect as in the fixed boundary heat flux case. These results

Figure 6 shows the corresponding results for instabilitieg;ngerline the different nature of these flows, which arise in
that are caused by a linear increase of the boundary temperggite a different contextsee Sec. 11l B and Appendix
ture with time Uo /v, <<0). The bold solid lines are for pure The influence of the Prandtl number on the instability can
temporal, i.e., no honzontgl temperature vanano;ziﬁ—(o,' be well described by a qualitative discussion of ]zB’n&T’
but ¢, = — BU, finite). In this case, the temperature profiles ¢oypling. While for very large Prandtl number this second
are second order polynomial§ = Prc,z2/2—ATz/2, com- instability mechanism has the character of a perturbation, it
pare Eq.(4b)] leading toS;,,= 1 [12]. The thin lines are for becomes increasingly important as Pr decreases. For very
Poisedille flows /v,<1) with combined spatial and tem- small Pr, also other velocity-dependent instability mecha-
poral variations of the boundary temperature, and are bedisms are expected to become more relevant, since in that
tween those for purébold solid lines and no(bold dashed case larger velocities are required to sustain the same non-
lines) temporal temperature variations. In any case! & linear vertical temperature profilgompare Eq(4b)]. How
fers not more than 20% ark} not more than 5% from the these oth_er mpdes are influenced b_y the horizontal tempera-

. h . ture gradient is an important question for further research.
corresponding values fdd,=0 (bold dashed lings These he fl idered h b ticularly int ina i
differences are small, considering that'Rearies very rap- r 1€ flows considered here may be particularly interesting in
. . ) this context as their inflection point can be continuously
idly with AT (changingAT not only changed\ T, but also  ¢p e q by varying@/v
: : » m-

h,, on which R4 depends quite sensitivelyln order to
explain the behavior of the thin lines foy,— 0, we note that
in this limit S;,,— 1 for AT/(2P1Bv ) <—1 andS;,,—0 for
AT/(2PrBv ) =—1 [13]. Therefore, the upper thin lines,
where AT/(2P1Bv,,)<—1, approach the bold solid line, We briefly discuss for constant heat flux boundaries the
while the lower thin lines, wherdT/(2Pi8v,,)=—1, ap- influence of temporal temperature variatidiesrresponding
proach the bold dashed lines foy—0. to Ug# 0) on the prefactopuv,, in Eq. (6). We only consider

The influence of the Prandtl numbfavhich is equivalent the casg8<vp, so that changes of the-induced flow can
to the influence of the terBU” on the eigenvalue problem P& Neglected. For this type of boundary conditighis not

: B i d directly by the boundaries, but rather a result of the
(8a)—(8c)] is shown in Figs. 7 and 8. Here, the results de-MPOSE :
fived abo]ve for Pe7 (bolg lines are compared to those for balance between heat advection and the net boundary heat

flux AO=0,-0,, with 6,=T'(z=1) and ©,=T'(z=

completely  determined by the parameterS,,
=PrBUyh,/0,. In particular, all flows withUy,=0 (and
thusS;,,=0) have the same critical values in this limit. This
behavior is demonstrated in Fig. 5 for Couefselid line9
and Poiseuille flow(long-dashed lingsas well as for flows

APPENDIX: BOUNDARIES WITH CONSTANT
HEAT FLUX

Pr—ce (thin lines, i.e., when theg-U’ coupling in Eq.(8a)  _1) peing the heat flux at the upper and lower boundary,
can be neglected. The stability threshold for Couette flowegpectively.
(solid lineg, which haspU’>0 everywhere in the channel, Integrating Eq(4b) from the lower to the upper boundary

is lowered by theg-U’ coupling throughout, in agreement ©Of the channel yields
with our discussions above. For Poiseuille fldang-dashed

lines), on the other handBU’<O0 in the upper angdU’ AO=2PB(vm—Uo)
>0 in the lower part of the channel, so that the destabilizing
influence in the lower part of the channel may be largely®’
compensated by the stabilizing influence in the upper part if
h, is large. Accordingly, the net destabilizing influence of B= A®

this mechanisnti.e., the difference between the thin dashed 2P(vyy—Ug)’
and the bold dashed lines in the inset of Fig.bécomes ) )

noticeable only for sufficiently smat,, when the bulk of ~Which can be written as

the unstable layer is in the lower part. For the largely

p-induced flow /v, =100), BU’<0 in the middle part P18y _Ao
and BU’>0 near the boundaries of the chanfiebmpare meo2

Fig. 2(@)]. Therefore, the influence of the-U’ coupling is

stabilizing for largeh, (where a large part of the unstable
layer is in the middle regionand becomes destabilizing for A®/ U
smallerh,. This effect is shown in Fig. 8, where again the prBUO__( 0 ) (A2)

bold lines correspond to Pi7 and the thin lines to Ppo. ~ 2 vy~ U

(A1)

14 o )
vm—Ug

and
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Using Eq. (A2), B<v,, and AT=—(0,+0,) (which is
valid for B<v,), we can now write Eq(6) as
J

(A3)

22

_)+

2

0,+0,
AO

T2+ 20
p(Z) vm—Upg

— A®
T(2)= - (Tp<z)—
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We find that an increase &f, increases the contribution of
the effective temperature componeﬁg—zzlz except for
very large temporal changes of the temperature, wlign
>Um-
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